Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: photoreduction of the redox disulfide using synchrotron radiation and evidence for a conformational switch implicated in function.

نویسندگان

  • Magnus S Alphey
  • Mads Gabrielsen
  • Elena Micossi
  • Gordon A Leonard
  • Sean M McSweeney
  • Raimond B G Ravelli
  • Emmanuel Tetaud
  • Alan H Fairlamb
  • Charles S Bond
  • William N Hunter
چکیده

Tryparedoxin (TryX) is a member of the thioredoxin (TrX) fold family involved in the regulation of oxidative stress in parasitic trypanosomatids. Like TrX, TryX carries a characteristic Trp-Cys-Xaa-Xaa-Cys motif, which positions a redox-active disulfide underneath a tryptophan lid. We report the structure of a Crithidia fasciculata tryparedoxin isoform (CfTryX2) in two crystal forms and compare them with structures determined previously. Efforts to chemically generate crystals of reduced TryX1 were unsuccessful, and we carried out a novel experiment to break the redox-active disulfide, formed between Cys-40 and Cys-43, utilizing the intense x-radiation from a third generation synchrotron undulator beamline. A time course study of the S-S bond cleavage is reported with the structure of a TryX1 C43A mutant as the control. When freed from the constraints of a disulfide link to Cys-43, Cys-40 pivots to become slightly more solvent-accessible. In addition, we have determined the structure of Trypanosoma brucei TryX, which, influenced by the molecular packing in the crystal lattice, displays a significantly different orientation of the active site tryptophan lid. This structural change may be of functional significance when TryX interacts with tryparedoxin peroxidase, the final protein in the trypanothione-dependent peroxidase pathway. Comparisons with chloroplast TrX and its substrate fructose 1,6-bisphosphate phosphatase suggest that this movement may represent a general feature of redox regulation in the trypanothione and thioredoxin peroxidase pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetoplast DNA replication: mechanistic differences between Trypanosoma brucei and Crithidia fasciculata

Kinetoplast DNA, the mitochondrial DNA of trypanosomatid parasites, is a network containing several thousand minicircles and a few dozen maxicircles. We compared kinetoplast DNA replication in Trypanosoma brucei and Crithidia fasciculata using fluorescence in situ hybridization and electron microscopy of isolated networks. One difference is in the location of maxicircles in situ. In C. fascicul...

متن کامل

The nucleotide sequence of a 3.2 kb segment of mitochondrial maxicircle DNA from Crithidia fasciculata containing the gene for cytochrome oxidase subunit III, the N-terminal part of the apocytochrome b gene and a possible frameshift gene; further evidence for the use of unusual initiator triplets in trypanosome mitochondria

A 3.2 kb segment of the maxicircle of Crithidia fasciculata mitochondrial (mt) DNA contains the gene for cytochrome oxidase subunit III (coxIII), the N-terminal portion of the gene for apocytochrome b (cytb) and two partially overlapping Unassigned Reading Frames (C.URF2/1). Transcript analysis of the segment reveals that both the coxIII gene and the C.URF2/1 area are transcribed into a pair of...

متن کامل

RNA polymerase II of Crithidia fasciculata. Within the protozoan order of the Kinetoplastida, this species is the least related to Trypanosoma brucei based on a phylogenetic tree constructed from a comparison of the mitochondrial 9S and 12S rRNA

The C-terminal domain of the largest subunit of RNA polymerase II in higher eukaryotes is present in the protozoan parasite Trypanosoma brucei in a strongly modified form. To determine whether this is a general feature of the Kinetoplastida and to determine the role of this domain in RNA polymerase II transcription, we have analysed the C-terminal domain of the distantly related species Crithid...

متن کامل

Turnover of trypanosomal ornithine decarboxylases.

Interestingly, there is a major difference in turnover rate between ornithine decarboxylases (ODCs) from various trypanosomatids. ODCs from Trypanosoma brucei and Leishmania donovani are both stable proteins, whereas ODC from Crithidia fasciculata is a metabolically unstable protein in the parasite. C. fasciculata ODC is also rapidly degraded in mammalian systems, whereas the closely related L....

متن کامل

The rotational dynamics of kinetoplast DNA replication.

Kinetoplast DNA (kDNA), from trypanosomatid mitochondria, is a network containing several thousand catenated minicircles that is condensed into a disk-shaped structure in vivo. kDNA synthesis involves release of individual minicircles from the network, replication of the free minicircles and reattachment of progeny at two sites on the network periphery approximately 180 degrees apart. In Crithi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 28  شماره 

صفحات  -

تاریخ انتشار 2003